SIDDHARTHA ACADEMY OF HIGHER EDUCATION

Deemed to be University

V R SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

SCHEME OF INSTRUCTION FOR FOUR YEAR UG PROGRAMME

SU24

Second Year –Third Semester Syllabus

Effective from 2025-26

VR SCHOOL OF ENGINEERING

ELECTRONICS & INSTRUMENTATION ENGINEERING

Scheme of Instructions for Four Year B.Tech Programme-VR24

SEMESTER I CONTACT HOURS: 29

S. No	Course Code	Course	Course Name	L	T	P	Credits
		Category					
1.	24MA101	BS	Mathematics – I	3	0	2	4
			(Linear Algebra, Series and Calculus)				
2.	24CY102	BS	Chemistry	3	0	0	3
3.	24BY101	BS	Biology for Engineers	3	0	0	3
4.	24CS101	ES	Problem Solving with Python	3	0	3	4.5
5.	24ME181	ES	Engineering Graphics	1	0	3	2.5
6.	24CY181	BS	Chemistry lab	0	0	2	1
7.	24ME182	ES	Workshop Practice	0	0	3	1.5
8.	24UC183	MC	Sports & Yoga / NSS/ NCC	0	0	3	0
	Total		,	13	0	16	19.5

SEMESTER II

CONTACT HOURS: 29

S.No	Course Code	Course	Course Name	L	T	P	Credits
1.	24MA102	BS BS	Mathematics – II (Differential equations & Computational methods)	3	0	2	4
2.	24PH102	BS	Engineering Physics	3	0	0	3
3.	24EN101	HS	Communicative English	3	0	3	4.5
4.	24EE101	ES	Electrical Network Analysis	3	0	0	3
5.	24IT101	ES	Programming using 'C'	2	0	2	3
6.	24UC181	ES	Design Thinking	0	0	2	1
7.	24PH181	BS	Physics lab	0	0	2	1
8.	24UC182	ES	AI Tools and Applications	0	0	2	1
9.	24UC101	MC	Essence of Indian Knowledge Tradition	2	0	0	
Total				16	0	13	20.5

Category
BS-Basic Science
ES-Engineering Science
Courses
HS-Humanities and Social
Science
MC-Mandatory Courses
UC- University Common

II Year I Semester (Semester III)

CONTACT HOURS: 26

S.No	Course Code	Course	Course Name	L	T	P	Credits
		Category					
1.	24MA202	BS	Complex Variables & Transform	4	0	0	4
			Techniques				
2.	24EI201	ES	Electronics Devices & Circuits	3	0	0	3
3.	24EI202	PC	Electrical & Electronic Measurements	3	0	0	3
	2121202						
4.	24EI203	PC	Digital Electronics	3	0	2	4
5.	24EI204	PC	Sensors and Transducers	3	0	0	3
6.	24EI281	PC	Measurements Lab	0	0	3	1.5
7.	24EI282	ES	Electronic Devices & Circuits Lab	0	0	3	1.5
8.	24UC201	MC	Universal Human Values-II	2	1	0	3
			Total	18	1	8	23

Universal Human Values-I Course is covered in Induction Program

Second Year (III Semester)

24MA202- Complex Variables & Transform Techniques

Course Category:	Basic Science	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	4 - 0- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	comi	oletio	n of	the co	ourse	. the	stude	nt wi	ll be	able	to:		
outcomes	CO1		ecessful completion of the course, the student will be able to: mploy methods to construct analytic functions													
	CO2	Dete	etermine the series expansions of complex variable function and evaluate contour tegration													
	CO3	App	oply Laplace transform techniques to convolute functions													
	CO4		se Fourier series and Fourier transforms to solve periodic and non-periodic nctions													
	CO5	Find	line a	and pa	arabol	a of b	est fit	, corre	elatio	n coef	ficien	t and	regre	ssion	lines	
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1	2	2			1										
achieveme nt of Program	CO2	2	2			1										
Outcomes (L – Low,	СОЗ	2	2			1										
M - Medium, H – High	CO4	2	2			1										
11 – 111gn	CO5	2	2			1										
Course		1	L		L	L			L		L	1	1			

Course Content

UNIT- I

Analytic Functions: Limit of a complex function, Derivative of f(z), Cauchy-Riemann equations in Cartesian and Polar coordinates, Analytic functions, Harmonic functions, Orthogonal systems

UNIT-II

Complex Integration: Complex integration, Line Integral, Series of complex terms: Taylor and Laurent Series (without proofs), Zeros and Singularities of analytic function, Residues, Calculation of residues, Residue theorem, Bilinear transformation

UNIT-III

Laplace Transforms: Introduction, Definition, Condition for existence, Transform of elementary functions Properties of Laplace transforms, Transforms of periodic functions, integrals, multiplication by tn and division by t, Evaluation of integrals by Laplace transforms, Inverse transforms, Method of partial fractions, Convolution theorem

UNIT-IV

Fourier Series and Transforms:

Fourier Series: Euler's Formulae, Conditions for a Fourier Expansion, Functions having point of discontinuity, Change of interval, Even and Odd functions.

Fourier transforms: Fourier Integral Theorem (without proof & No problems), Fourier sine and cosine integrals (without proof & No problems), Fourier Transforms, Fourier sine and cosine transforms

UNIT-V

Statistics: Curve fitting, Method of least squares, working procedure to fit straight line and parabola, Correlation, Coefficient of correlation, Lines of Regression

Text books and Reference books

Text Book:

[T1] B.S.Grewal, "Higher Engineering Mathematics", 44th Ed., Khanna Publishers, 2019

Reference Books:

[R1] Erwin Kreyzig, "Advanced Engineering Mathematics", 10th Ed., John Wiley & Sons, 2015.

[R2] R.K.Jain, S.R.K.Iyengar, "Advanced Engineering Mathematics", 5th Ed., Narosa Publishers, 2016.

[R3] Ramana B V, "Higher Engineering Mathematics", 1st Ed., Tata MC Graw Hill.

Eresources and other digital material

- 1. MIT OpenCourseWare: Complex Variables with Applications
 https://ocw.mit.edu/courses/18-04-complex-variables-with-applications-spring-2018/pages/lecture-notes/
- 2. NPTEL: Complex Analysis https://archive.nptel.ac.in/courses/111/103/111103070/
- 3. MIT OpenCourseWare: Differential Equations
 https://ocw.mit.edu/courses/18-03sc-differential-equations-fall-2011/pages/unit-iiifourier-series-and-laplace-transform/laplace-transform-basics/
 https://ocw.mit.edu/courses/18-03sc-differential-equations-fall-2011/pages/unit-iiifourier-series-and-laplace-transform/partial-fractions-and-inverse-laplace-transform/
- 4. NPTEL: Transform Techniques for Engineers https://archive.nptel.ac.in/courses/111/106/111106111/
- 5. Introduction to Fourier Analysis
- 6. Introduction to Fourier Analysis Course
- 7. MIT OpenCourseWare: Computational Science and Engineering https://ocw.mit.edu/courses/18-085-computational-science-and-engineering-i-fall-2008/resources/lecture-33-filters-fourier-integral-transform/
- 8. NPTEL: Transform Techniques for Engineers https://archive.nptel.ac.in/courses/111/106/111106111/
- **9.** NPTEL: Mathematics Regression Analysis

24EI201- Electronics Devices & Circuits

Course Category:	Engineering Science	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Engineering Physics	Continuous Evaluation:	30
_		Semester end Evaluation:	70
		Total Marks:	100

										mesu			l Ma		100	
Course	Upon	succe	ssful	com	pletio	n of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1	Ana	lyze tl	ne ope	eration	n and	V I cł	naract	eristic	s of s	emico	onduc	tor di	odes		
	CO2	Desi	gn die	ode ci	rcuits	for v	arious	appli	cation	ıs						
	CO3	Ana	lyze tl	he ope	eration	n and	chara	cterist	tics of	trans	istors					
	CO4	Ana	lyze tl	he ope	eration	n and	V I cł	naract	eristic	es of c	ptoel	ectron	nic de	vices		
	CO5				simul device		o impl	lemen	t an e	lectro	nic ci	rcuit ı	using	vario	us	
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1															
achieveme nt of Program	CO2															
Outcomes (L – Low,	CO3															
M - Medium, H – High	CO4															
Course Content	UNITES Emico Ampero Resista mechar UNITE Diode wave, I filter, C	onduce Chance, Shisms, II Appli Full w	aracte Space , Zene cation	Char dioc	s, The ge or de iode a	e ten Tran pprox ped, E	nperat sition imation Bridge	Capa Ons, C	lepend citand Clippe fiers v	dence ce, Di	of diffusion	P-N (on cap	Chara pacitar	cteris nces.	tics, Break	Diod down Half

UNIT- III

Bipolar Junction Transistor: The Junction Transistor, Transistor Current components Characteristics of Common Base, Common Emitter and Common Collector Configuration, Relation between α , β , and γ , Transistor as a Switch, Transistor as an amplifier, Operating Point, Factors affecting the operating point

UNIT-IV

1	
	Field Effect Transistors: Introduction to FET, Construction, and Characteristics of JFETs, Drain and Transfer Characteristics of JFET, FET parameters, FET as an amplifier, JFET biasing circuits - Fixed bias, Voltage divider bias. Depletion-type MOSFET and Enhancement-type MOSFET, Drain and Transfer Characteristics of MOSFET UNIT- V Special Semiconductor Devices: Tunnel diode, Varactor Diode, PIN Diode, IMPATT diode, Solar Cell, LED, LCD, Photodiode, Phototransistor, UJT, SCR.
Text books	Text Book:
and	[T1] Jacob Millman, Christos C Halkias & Satyabrata JIT, "Millman's Electronic Devices
Reference	and Circuits", 4 th Ed., TMH, 2015.
books	[T2] Ryder, John Douglas "Electronic Fundamental and Applications", 5th Ed., PHI.
	Reference Books:
	[R1] GK Mithal," Electronic Devices and Circuits", 23 rd ED., Khanna Publishers
	[R2] Robert L Boylested and Louis Nashelsky, "Electronic Devices and Circuit Theory",
	10 th Ed., Pearson India, 2009
	[R3] David A Bell., "Electronic Devices and Circuits", 5th Ed., Oxford University Press,
	2008
E-	1. http://www.nptelvideos.in/2012/12/basic-electronics-drchitralekha-mahanta.html
resources	2. http://nptel.ac.in/courses/117103063/
and other	3. http://nptel.ac.in/courses/117106033/
digital	4. http://nptel.ac.in/courses/117102061/
material	

24EI202- Electrical & Electronic Measurements

Course Category:	Professional Core	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 0
Prerequisites:	Circuit analysis	Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	comp	oletio	n of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1		esign and calibrate electronic measurement Systems for the measurement C & DC voltage, current and power													
	CO2		halyze the bridge circuits to measure the unknown values of R, L and C.													
	CO3		ompare the operation of various oscilloscopes and probes.													
	CO4		plain the principles of various signal generators and wave analyzers.													
	CO5	_		-	-				_	_			al dis		•	
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course Outcomes towards	CO1	3														
achieveme nt of Program	CO2		3													
Outcomes (L – Low,	CO3		2													
M - Medium, H – High	CO4															
8	CO5															
Course		•	•	•		•	•					•	•	•	•	

Course Content

UNIT-I

Electromechanical Indicating Instruments: Suspension galvanometer; Torque and deflection of the galvanometer - Steady state deflection, Dynamic behaviour; Permanent magnet moving coil mechanism - D'Arsonval movement, Temperature compensation

Electrical Measurements: DC ammeters - Shunt resistor, Ayrton shunt, Multirange ammeters, The Ayrton shunt, DC voltmeters - Multiplier resistor, Multirange voltmeter, Voltmeter sensitivity - Ohms per volt rating, Loading effect, Calibration of dc instruments, Alternating current indicating instruments - Electrodynamometer, Rectifier type instruments, Electrodynamometers in power measurements, Watt hour meter, Power factor meters

UNIT- II

Bridges: Wheatstone's bridge (Measurement of resistance), Kelvin's double bridge, Maxwell's bridge, Hay's bridge, Schering bridge, Wien's bridge, Wagner's ground connection

Electronic Instruments: AC Voltmeter using rectifiers, True RMS voltmeter,

Digital voltmeters - Ramp technique, Staircase ramp DVM, Successive approximation type DVM, Dual slope integrating type DVM, Q Meter - Impedance measurement using Q Meter

UNIT-III

Oscilloscopes: Block diagram of oscilloscope, Vertical amplifier, Horizontal deflecting system, Delay line in triggered sweep, Dual beam CRO, Dual trace oscilloscope (basic block diagrams), Sampling oscilloscope, Probes for CRO - Direct probes, Passive voltage probe, Active probes, Attenuators - Uncompensated attenuators, Simple compensated attenuator

UNIT-IV

Signal Generators: Basic standard sine wave generator, Standard signal generator, Function generator, Laboratory square wave and pulse generator

Wave Analyzers: Basic wave analyzer, Frequency selective wave analyzer, Heterodyne wave analyzer, Harmonic Distortion Analyzer- Tuned circuit type, Basic Spectrum analyzer

UNIT- V

Frequency Counters and Time Interval Measurements: Digital frequency meter - Principle of operation, Basic circuit of a digital frequency meter, Digital measurement of time - Principle of operation, Time base selector, Period measurement, Electronic Counter - Totalizing, Frequency mode, Ratio mode, Period mode, Time interval mode.

Digital Display Devices: Segmental Display - 7 segment, Dot Matrix, LED and LCD, Typical applications of digital display

Text books and Reference books

Text Book:

[T1] W D Cooper & A D Helfrick, "Electronic Instrumentation and Measurement Techniques", PHI, 1998 (Unit-I)

[T2] H.S.Kalsi, "Electronic Instrumentation", 2nd Ed., TMH. (Units-II, III and IV)

Reference Books:

[R1] A.K. Sawhney, "A Course in Electrical and Electronic Measurements and Instrumentation", Dhanpat Rai & Co

[R2] Oliver & Cage, "Electronic Measurements and Instrumentation", Mc Graw Hill, 1975

Eresources and other digital material

https://www.youtube.com/watch?v=3eYmFjHnQjY&list=PLbRMhDVUMngcoKrA4sHzvbNVSE6IpEio

24EI203- Digital Electronics

Course Category:	Professional Core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practice:	3 - 0- 2
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	comp	pletic	n of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1	Den	nonst	rate p	rofic	iency	in co	odes a	and n	umbe	er sys	tem c	onve	rting	circu	its
	CO2	Sele desi		itable	logi	c fam	ilies	and n	ninim	izatio	on me	ethod	s for	digita	al sys	tem
	CO3		\sim	nd Aı	nalyz	e Cor	nbina	tiona	ıl and	Sequ	ıentia	ıl log	ic cir	cuits		
	CO4	Use	the spice software to design the digital electronic circuits													
Contributi on of		PO 1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS O1	PS O2	PS O3
Course		-	2	2 3 4 5 6 7 8 9 10 11 12 O1 O2 O3												
Outcomes towards	CO1	2													1	
achieveme nt of Program	CO2	2													1	
Outcomes (L – Low,	CO3		3												2	
M - Medium, H – High	CO4					2										2
Course			•	•	•	•	•				•	•		•	•	•

Course Content

UNIT-I

Number Systems: Number systems representation, Conversion of bases, Binary Arithmetic, Representation of Negative numbers, Codes: Binary, BCD, Excess 3, Gray.

Boolean Algebra: Basic Theorems and properties, Boolean Functions, Canonical and standard forms.

Digital Logic Gates- AND, OR, NAND, NOR, XOR, XNOR

Exercises:

- 1. Realization of logic gates using universal gates
- 2. Simplify the given Boolean function and Implement using NAND gates

UNIT-II

Logic Families: Introduction, Characteristics of Digital ICs, Transistor-Transistor Logic (TTL), Emitter Coupled Logic (ECL), CMOS Logic.

Gate Level Minimization: The K-Map Method: 4-variable maps, Don't Care conditions, NAND and NOR implementation, Quine-McCluskey method

Exercises:

- 1. Implement the given Boolean function using logic gates in SOP and POS forms
- 2. Simplify the given Boolean function and Implement using NOR gates

UNIT-III

Combinational Logic Design: Combinational circuits, Adders & Subtractors, Magnitude comparator, Binary to Gray and Gray to Binary code converters, Multiplexers, De-Multiplexers, Decoders, BCD to 7 Segment decoder, Encoders, Priority encoder

Exercises:

- 1. Implement Adders & Subtractors
- 2. Design of MUX and DEMUX
- 3. Design and implementation of code converters
- 4. Design BCD-to 7 segment decoder

UNIT-IV

Flip-Flops: Clocked S-R flip-flop, Preset and clear, J-K flip-flop, Race around condition, Master slave J-K flip-flop, D & T flip-flops, Excitation tables of flip-flops, Flip-Flop conversions.

Shift Registers: Types, Bi-directional shift register, Universal Shift Register, Applications of shift resisters: Ring counter, Twisted ring counter

Exercises:

- 1. Verification of Flip-Flops using gates
- 2. Realization of shift registers

UNIT-V

Counters: Asynchronous counters – Up/Down counters, Modulus of the counter, Design of Synchronous counters, Finite State Machines: Mealy, Moore.

Memory Devices: Functional block diagram and operation - ROM, PROM, EPROM, EEPROM, Flash memory, RAM: Static and dynamic RAM, PAL, PLA.

Exercises:

- 1. Design of synchronous counters using IC 74163
- 2. Implementation of Boolean functions using PLA and PAL

Text books and Reference books

Text Book:

- [T1] M. Morris Mano, "Digital Logic and Computer Design", PHI, 2003
- [T2] R P Jain "Modern Digital Electronics", 4th Ed., TMH

Reference Books:

- [R1] A. Anand Kumar, "Fundamentals of Digital Circuits", PHI, 2006
- [R2] Thomas L. Floyd "Digital Fundamentals", 11th Ed., Pearson Education, 2015

Eresources and other digital material

1. https://nptel.ac.in/courses/117/106/117106086/

24EI204- Sensors and Transducers

Professional Core	Credits:	3
Theory	Lecture - Tutorial - Practice:	3 - 0- 0
	Continuous Evaluation:	30
	Semester end Evaluation:	70
	Total Marks:	100

Outcomes towards achieveme nt of Program Outcomes (L – Low, M - Medium, H – High CO5 2													Tota	II IVIA	1 V2.	100	'
CO1 Analyze various performance characteristics of instrument and the quality measurement CO2 Apply various types of resistive and reactance variation sensors in real tiapplications CO3 Interpret the design aspects of signal conditioning circuits for resistive areactance variation sensors CO4 Comprehend the principles of piezoelectric and optical transducers CO5 Illustrate the operation of miscellaneous transducers CO5 Illustrate the operation of miscellaneous transducers CO6 Illustrate the operation of miscellaneous transducers CO7 Course Outcomes towards achievement of from the program of the program of the program of the program outcomes (L – Low, M – High CO5 2		_															
Color Comprehend the principles of piezoelectric and optical transducers	outcomes	CO1		•		s per	forma	ance	chara	cterist	tics o	of ins	trume	ent ar	id the	e qua	lity o
CO3 Interpret the design aspects of signal conditioning circuits for resistive a reactance variation sensors CO4 Comprehend the principles of piezoelectric and optical transducers CO5 Illustrate the operation of miscellaneous transducers Contribution of 1 2 3 4 5 6 7 8 9 10 11 12 01 02 CO Course COtomes towards achievement of Program Outcomes (L – Low, M – Medium, H – High CO5 2		CO2		•		types	of 1	esisti	ve an	d rea	ctanc	e var	iation	sens	ors in	n real	time
Contribution of CO1		CO3				_	-		of sig	nal c	onditi	oning	circ	uits f	or re	sistiv	e and
Contribution of Course Outcomes towards achievement of Program Outcomes (L – Low, M – High CO5 2 2		CO4							ezoele	ectric	and o	ptical	trans	ducer	S		
on of Course Outcomes towards achieveme nt of Program Outcomes (L – Low, M – Medium, H – High CO5 2		CO5	Illus	trate	the op	eratio	n of r	niscel	laneo	us trai	nsduc	ers					
Outcomes towards achievement of Program Outcomes (L – Low, M – Medium, H – High CO5 2	on of																PS O3
Note of Program Outcomes (L – Low, M - Medium, H – High CO3 2	Outcomes towards	CO1		2													
CO3	nt of	CO2	2														
CO4 2	(L-Low,	СОЗ		3													
Course Content UNIT- I Instrument Characteristics: Block diagram of generalized instrument system Calibration and Standards, Static characteristics - Desirable & Undesirable characteristics; Dynamic characteristics. Errors in Measurement and Statistical Analysis: Classification of errors, Limitin error and probable error, Statistical analysis of measurement data UNIT- II Transducers: Classification of transducers, Characteristics of transducers. Variable Resistance Transducers: Principle of operation, Construction and Characteristics of Resistance potentiometers, Strain gauge, Resistance thermometers	Medium,	CO4	2														
UNIT- I Instrument Characteristics: Block diagram of generalized instrument system Calibration and Standards, Static characteristics - Desirable & Undesirable characteristics; Dynamic characteristics. Errors in Measurement and Statistical Analysis: Classification of errors, Limitin error and probable error, Statistical analysis of measurement data UNIT- II Transducers: Classification of transducers, Characteristics of transducers. Variable Resistance Transducers: Principle of operation, Construction and Characteristics of Resistance potentiometers, Strain gauge, Resistance thermometers	g	CO5	2														
Variable Resistance Transducers: Principle of operation, Construction as Characteristics of Resistance potentiometers, Strain gauge, Resistance thermometer		Instruction Calibra charact Errors error and UNIT	UNIT- I Instrument Characteristics: Block diagram of generalized instrument system, Calibration and Standards, Static characteristics - Desirable & Undesirable characteristics; Dynamic characteristics. Errors in Measurement and Statistical Analysis: Classification of errors, Limiting error and probable error, Statistical analysis of measurement data														rable
UNIT- III		Variab Charac Thermi	ole I teristi istors,	Resist	ance Res	Tra istanc	nsdu e po	cers: tention	Prin meter	ciple s, Str	of ain g	oper gauge,	ation, Res	Co istanc	nstruc e the		and neter,

Inductance Transducers: Principle of operation, Construction and Characteristics of

	Variable reluctance sensors, Eddy current sensors, Linear variable differential
	transformers (LVDTs), Magneto elastic sensors, Signal conditioning of inductive transducers
	Capacitive Transducers – Principle of operation, Construction and Characteristics of
	Capacitive sensors using change in area of plates, distance between plate and change of
	dielectric constant
	UNIT- IV
	Piezoelectric Sensors: Principle of operation, Expression for output, Piezoelectric
	materials, Equivalent circuit of Piezo-electric Transducers, Loading effects and frequency
	response.
	Optical Transducers : Principle of operation of Photo-emissive cells, Semi-conductor
	Photoelectric transducers
	UNIT- V
	Miscellaneous Sensors: Digital sensor, IR radiation Sensors, Ultrasonic Sensors, Fiber
	optic sensors, Smart sensors, Colour sensor, Bio Sensors
Text books	Text Book:
and Reference	[T1] Sawhney A. K., and Sawhney, Puneet, A Course in Electrical and Electronic
books	Measurements and Instrumentation, 2016, 19 th Ed., Dhanpat Rai & Company
DOOKS	[T2] D. Patranabis, Sensors and Transducers, 2 nd Ed., Prentice Hall of India, 2011.
	Reference Books:
	[R1] Doebelin, E. O., and Manik, D. N., Measurement systems: application and design,
	2020, 7 th Ed., McGraw Hill Education
	[R2] Murty, D. V. S, Transducers and Instrumentation, 2 nd Ed., PHI Learning Pvt.Ltd, 2012
	[R3] Dr. D.S. Kumar, "Mechanical Measurements & Control", 3 rd Ed., Metropolitan Book
	Co. Pvt. Ltd. 2015
E-	https://nptel.ac.in/courses/108/108/108108147
resources	
and other	
digital	
material	

24EI281- Measurements Lab

Course Category:	Professional Core Lab	Credits:	1.5
Course Type:	Theory	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

Course	Upon	succe	ssful	com	pletic	on of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes		Apply resist	ance,	capac	itance	e, indu	ıctanc	e,				•				
	CO2	Analy	ze the	outpu	ts and	interp	reted t	the dat	ta gene	erated	from t	he bri	dge m	easure	ments	
	CO3	Cond	uct ex	perin	nents	as ind	ividua	al or to	eam b	y usir	g diff	erent	types	of br	idges	
	CO4	Make	an ef	fectiv	e rep	ort ba	sed or	expe	rimen	its						
Contributi on of		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Course																
Outcomes towards	CO1	3														
achieveme nt of Program	CO2	3														
Outcomes (L – Low,	CO3		1 2													
M - Medium, H – High	CO4											1				
	List of 1. DC 2. AC 3. Mea 4. Mea 6. Mea 7. Mea 8. Mea functio 9. Mea 10. Me 11. Cal 12. Sin	meter meter asurer asurer asurer asurer n gen asurer asure ibrati	rs and rs and ment ment ment ment ment ment ment ment	I theid theid theid of voor freedom of care of resort among the control of the co	r ranglagesistanductasistan plitudaducta	ge ex, freque of nce wance ace, inde an nce on nce wance are are are are are are are are are ar	tensic juency small sing using nduct d free of high sing a	on. y and ll resi Maxy Shea ance quence h Q c a Wie	istors well to aring and co cy of coils to en bri omete	using bridge bridge apac diffe using idge. r.	g Kel e. ge. itance rent t	vin de using eypes	ng a I of w	e bric LCR : avefo	metei	

24EI282- Electronic Devices & Circuits Lab

Course Category:	Engineering Science Lab	Credits:	1.5
Course Type:	Theory	Lecture - Tutorial - Practice:	0 - 0- 3
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

	T															
Course	Upon	succe	ssful	comp	pletio	n of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1		lyze tl igurat		eratio	of d	iodes,	by ev	aluat	ing th	eir I-\	V chai	racteri	stics	and ci	rcuit
	CO2			he ope			ansist	ors b	y eval	luatin	g thei	r I-V	charac	cterist	tics an	ıd
	CO3		esign basic diode circuits related to various applications using PSPICE tools nalyze the working of BJT, FET and its application as an amplifier virtually sing NI Multisim) and infer their salient parameters													
	CO4															
Contributi		РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
on of		1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
Course Outcomes towards	CO1															
achieveme nt of Program	CO2															
Outcomes (L – Low,	СОЗ															
M - Medium, H – High	CO4															
	List of	Ехре	rime	ents	I	I	I			I	I	l.		I		
Content	A. Elec	_			Mod	lule:										
	1. (Charac	cterist	ics of	PN jı	ınctio	n dio	de								
	2. (Charac	cterist	ics of	Zene	r diod	.e									
	3. (Charac	cterist	ics of	a tran	sistor	in co	mmo	n emi	tter co	nfigu	ration	l			
		Orain									_			or		
		hara												-		

- 5. Characteristics of a Uni Junction Transistor
- 6. Analyze the effects of operation point location on amplifier response

B. P-Spice Module:

- 7. Design of unbiased clampers.
- 8. Design voltage regulator using Zener.
- 9. Analyze the performance of full-wave rectifier operation with and without a filter.
- 10. Frequency response of CE amplifier.
- 11. Frequency response of CS Amplifier.
- 12. Design of UJT Relaxation Oscillator

24UC201- Universal Human Values-II

Course Category:	Mandatory Course	Credits:	3
Course Type:	Theory	Lecture - Tutorial - Practice:	2 - 1- 0
Prerequisites:		Continuous Evaluation:	30
		Semester end Evaluation:	70
		Total Marks:	100

												10ta	ıı Ma	rks:	100	
Course outcomes	Upon	succe	ssful	com	pletio	on of	the co	ourse	, the	stude	nt wi	ll be	able	to:		
outcomes	CO1												ation a			
	CO2	Ana	lyse v	arious	saspe	cts of	the h	uman	being	as th	e com	binati	ion of 1) [K4	Self	and B	ody
	СОЗ	App harn	ly the	know at the	ledge level	of ni	ne un	iversa ınd ap	l valu precia	es in late all	huma	n-hun	nan re al fact	lation		
	CO4	Diffe the r	erenti nutua	ate th	e char llmen	acteri	stics a	and ac	ctivitie	es of v			ers of			study
	CO5	Present sustainable solutions to various challenges in society and Nature, and identify that the solutions are practicable [K3].														
Contributi on of Course		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
Outcomes towards achieveme	CO1															
nt of Program	CO2															
Outcomes (L – Low, M -	CO3															
Medium, H – High	CO4															
	CO5															
Course Content	Course Educa Self-ex validat look at Right fulfillm	UNIT- I Course Introduction, Need, Basic Guidelines, Content and Process for Value Education Contents: Purpose and motivation for the course, recapitulation from UHV-Self-exploration: what is it? Its content and process, 'Natural acceptance' and experiment validation – as the process for self-exploration, Continuous happiness and prosperity – look at basic human aspirations. Right understanding, relationship and physical facility – the basic requirements fulfillment of aspirations of every human being with their correct priority, understanding happiness and prosperity correctly – a critical appraisal of the current scenario, method												HV-I, nental ty – a ts for anding nod to		

UNIT-II

Understanding Harmony in the Human Being – Harmony in Myself: Understanding human being as a co-existence of the sentient 'I' and the material 'Body' Understanding the needs of Self ('I') and 'Body' – happiness and physical facility, Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer).

Understanding the characteristics and activities of 'I' and harmony in 'I'. Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs. meaning of Prosperity in detail, Programs to ensure Sanyam and Health

UNIT-III

Understanding Harmony in the Family and Society – Harmony in Human-Human Relationship: Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfillment to ensure mutual happiness; Trust and Respect as the foundational values of relationship, Understanding the meaning of Trust; Difference between intention and competence, Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship.

Understanding the harmony in the society (society being an extension of family); Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals, Visualizing a universal harmonious order in society—Undivided Society, Universal Order—from family to world family

UNIT-IV

Understanding Harmony in Nature & Existence – Whole existence as Coexistence:

Understanding the harmony in the Nature, Inter-connectedness and mutual fulfillment among the four orders of Nature – recyclability and self-regulation in nature, Understanding Existence as Co-existence of mutually interacting units in all-pervasive Understanding Existence as Co-existence of mutually interacting units in all-pervasive

UNIT-V

Ethics: Natural acceptance of human values, Definitiveness of ethical human conduct, Basis for humanistic education, humanistic constitution and humanistic universal order, Competence in professional ethics: a) ability to utilize the professional competence for augmenting universal human order, b) ability to identify the scope and characteristics of people-friendly and eco-friendly production systems, c) ability to identify and develop appropriate technologies and management patterns for above production systems, Case studies of typical holistic technologies, management models and production systems, Strategy for transition from the present state to Universal Human Order: a) at the level of individual: as socially and ecologically responsible engineers, technologists and managers, b) at the level of society: as mutually enriching institutions and organizations

Text books and Reference books

Text Book:

- [T1] Gaur, R.R., Sangal, R, & Bagaria, G.P. "A Foundation Course in Human Values and Professional Ethics", Excel Books Private Limited, New Delhi, 2010.
- [T2] Gaur, R.R., Sangal, R, & Bagaria, G.P. "A Foundation Course in Human Values and Professional Ethics", Excel Books Private Limited, New Delhi, 2019

Reference Books:

- [R1] Jeevan Vidya: Ek Parichaya, A. Nagaraj, Jeevan Vidya Prakashan, Amarkantak , 1999
- [R2] Human Values, A. N. Tripathi, New Age International Publishers, New Delhi, 2004
- [R3] The Story of Stuff: The impact of overconsumption on the planet, our communities, and our health and how we can make it better, Annie Leonard, Free Press, New York 2010
- [R4] The story of my experiments with truth: Mahatma Gandhi Autobiography, Mohandas Karamchand Gandhi, B. N. Publishing 2008
- [R5] Small is beautiful: A study of economics as if people mattered, E. F. Schumacher, Vintage Books, London 1993
- [R6] Slow is beautiful: New Visions of Community, Cecile Andrews, New Society Publishers, Canada 2006
- [R7] Economy of Permanence, J. C. Kumarappa, Sarva-Seva-Sangh Prakashan, Varanasi 2017
- [R8] Bharat Mein Angreji Raj, Pandit Sunderlal, Prabhath Prakashan, Delhi 2018
- [R9] Rediscovering India, Dharampal, Society for Integrated Development of Himilayas 2003
- [R10] Hind Swaraj or Indian Home Rule, M. K. Gandhi, Navajivan Publishing House, Ahmedabad 1909
- [R11] India Wins Freedom: The Complete Version, Maulana Abul Kalam Azad, Orient Blackswan 1988)
- [R12] The Life of Vivekananda and the Universal gospel, Romain Rolland, Advaitha Ashrama, India 2010
- [R13] Mahatma Gandhi: The Man who become one with the Universal Being, Romain Rolland, Srishti Publishers & Distributors, New Delhi 2002.

Eresources and other digital material

- 1. Textbook-1: https://dokumen.pub/a-foundation-course-in-human-values-and-professional-ethics-firstnbsped-9788174467812.html
- 2. AICTE SIP Youtube Channel: <u>https://www.youtube.com/channel/UCo8MpJB_aaVwB4LWLAx6AhQ</u>
- 3. AICTE UHV Teaching Learning Material: https://fdp-si.aicte-india.org/download.php#1