24IT501- MATHEMATICAL FOUNDATIONS FOR DATA SCIENCE

Course		Program Core			Credits:		3	
Category:					Credits.			
Course Type:		Theory			Lecture-Tutorial- Practice:		3-0-0	
Prerequisites:				Continuous Evaluation:		40		
				Semester end Evaluation:		60		
					Total Marks:		100	
Course	Upon	successful c	ompletion of	f the course,	the student will be able to:			
Outcomes	CO1	Apply the basic concepts of linear algebra to singular value						
		decomposition						
	CO2	Calculate probabilities for continuous probability distributions						
	CO3	Predict the joint probabilities for two random variables						
	CO4	Explain the methods of point estimation of parameters and test the						
		significance of regression analysis						
	CO5	· ·						
		adequate fit to the data						
Contribut		PO1	PO2	PO3	PO 4	PC) 5	
ion of								
Course	CO1	2			2	1		
Outcomes								
towards	CO2	2			2	1		
achieveme								
nt of	CO3	2			2	1		
Program								
Outcomes	CO4	2			2	1		
(1-Low, 2-								
Medium,	CO5	2			2	1		
3- High)								
Course	UNIT-I: Linear Algebra							
Content	Solving linear equations: Vectors and linear equations, Elimination Using							
	Matrices, Rules of Matrix operations, Inverse Matrices,							
	Elimination=Factorization: A=LU, Vector Spaces and Subspaces: Spaces of							
	Vectors, The Null space of A: Solving Ax=0 and Rx=0, The complete solution to							
	Ax=b, Independence, Basis and Dimensions, Eigenvalues and Eigenvectors, the							
	Singular value Decomposition							
	_ ` _ •	(2 by 2 matrices only)						
	UNIT II: Continuous Random variable and Probability Distributions							
	Probability Distributions and Probability Density Functions, Cumulative							
	Distribution Functions, Mean and Variance of a Continuous Random Variable,							
	Continuous Uniform Distribution, Normal Distribution, Normal Approximation to							
	the Binomial and Poisson Distributions							

UNIT III: Joint Probability Distributions

Joint Probability Distributions for Two Random Variables, Conditional Probability Distributions and Independence, Covariance and Correlation, Common Joint Distributions: Multinomial Probability Distribution, Bivariate Normal Distribution, Linear Functions of Random Variables, Moment-Generating Functions

UNIT IV

Statistical Inferences and Regression Analysis

Point Estimation, Point estimation of Parameters: Method of Moments-Method of Maximum Likelihood, Hypothesis Testing, Empirical Models, Simple Linear Regression, Properties of the Least Squares Estimators, Hypothesis Tests in Simple Linear Regression: Use of t-Tests, Analysis of Variance Approach to Test Significance of Regression

UNIT V:

Confidence Intervals: Confidence Intervals on the Slope and Intercept, Confidence Interval on the Mean Response, Prediction of New Observations, Adequacy of the Regression Model: Residual Analysis, Coefficient of Determination(\mathbb{R}^2), Correlation, Regression on Transformed Variables, Logistic Regression

Text books and Reference books

Text Book(s):

- [1]. Gilbert Strang, Introduction to Linear Algebra (5th Edition),2016, Wellesley-Cambridge Press
- [2]. Douglus C. Montgometry, George C. Runger, Applied Statistics and Probability for Engineers (Seventh Edition) ,2018, John Wiley & Sons, Inc

Reference Book(s):

- [1]. Kishor S. Trivedi, Probability and Statistics with Reliability, Queuing, and Computer Science Applications, John Wiley &Sons, 2016
- [2]. M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis, Cambridge, 2005

Eresources and other digital material

Maggie Myers, Robert van de Geijn, (24.06.2019).Linear Algebra - Foundations to Frontiers, UTAustinX,

https://www.edx.org/course/linear-algebra-foundations-to-frontiers-0

Prof. Philippe Rigollet(2016), Statistics For Applications

https://ocw.mit.edu/courses/18-650-statistics-for-applications-fall-2016/pages/syllabus/